• <s id="bqakz"><object id="bqakz"><blockquote id="bqakz"></blockquote></object></s>
    1. <dd id="bqakz"><center id="bqakz"></center></dd>
      <th id="bqakz"></th>
      <s id="bqakz"><object id="bqakz"></object></s><form id="bqakz"></form>
      <button id="bqakz"></button>
        1. <button id="bqakz"></button>
          <button id="bqakz"></button>
          <button id="bqakz"><acronym id="bqakz"></acronym></button>
          <dd id="bqakz"><track id="bqakz"></track></dd>

          媒体中心
          Media Center
          新闻中心
           > 媒体中心 > 新闻中心
          小试
          发布时间:2015-07-31
          MCT PROCESS BENCH SCALE UNIT RESULTS


          In Sep. 2013, Beijing Huashi decided to design and build a bench scale experimental unit associating with the R&D institution, and on the basis of MCT theoretical research, in Sanju Fuda Fertilizer & Catalyst National Engineering Research Center (Hereinafter referred to as “Sanju Fuda”).


          Fig.1 The bench scale experimental unit

          After finishing designing the experimental scheme, dedicated catalysts were used regarding to certain types of inlet raw material, and the experiment was carried out in parallel several times with varying (one of the) reaction parameters. A large number of experimental data was obtained. Further in-depth research and analysation of these data provided deeper research results, which pointed out the direction of the design and development of the pilot plant.

          Key Results Obtained

          1. Research on the performance of different catalysts, mainly focused on the catalysts with size less than 5 μm. The appropriate inlet raw-catalyst ratio was found for different catalyst. Successfully located and figured the performance of the active functional group of hydrotreating, and established an infinitesimal reactor theory system.
          2. Carried out the research on the coking substance adsorption performance of the catalyst in suspended bed. Observed the percentage conversion, coking status of the reactor etc. through modifying the catalyst’s pore volume, specific surface area. Several new suspended-bed-dedicated catalysts were developed which can effectively avoid the polymerization of coking precursor such as colloid and asphaltene base on these observations.
          3. Research on the bed formed by catalysts with different size distribution. Through measuring and calculating parameters such as bed density, size of the bubble, gas holdups, solid concentration etc., a new reaction system was developed, which is called “three phase well-mixed bedless infinitesimal reaction system”. This system is capable of pushing the reaction rate towards its theoretical limit as far as possible, therefore maximized the catalysts’ reactivity, mixing rate, disperse performance, and reaction space usage efficiency.
          4. Research on the change pattern of the percentage conversion regarding to the reaction temperature. The appropriate reaction temperature of different inlet materials was found ranged 430~450 ℃. Obtained the change pattern of the reaction rate of different inlet raw regarding to different heating rate (℃/min), and located the reaction-rate -sensitive temperature range.
          5. Obtained the mass balance of different inlet raw under different reaction condition, and carried out in-depth research on the products to optimize the production route of the MCT process.
          6. Research on the change pattern of the percentage conversion regarding to the reaction pressure. The appropriate reaction pressure of upgrading heavy-oil was found ranged 18~25 Mpa.
          7. Construct the reaction model of the suspended bed hydrotreating process on the basis of the product yield under different reaction condition associating with the thermalcracking and hydrocracking model.
          8. Through the analysation of the coking substance of different inlet raw, the coking features in hydrogen environment were obtained, along with a theoretical coking avoiding scheme involving usage of appropriate catalyst and operating condition.
          9. Research on the percentage conversion regarding to the different contact time and optimized the process accordingly.
          ?
          MCT工艺小试阶段成果

          2013年9月,公司在研究MCT理论技术的基础上,与科研单位合作,在福建三聚福大化肥催化剂国家工程研究中心设计并建立了小试装置。


          图1  实验小试装置
          在设计了科学的实验方案基础上,针对各种原料,采用不同的催化剂,在不同反应条件下做了多组平行实验,得到了大量的实验数据。针对这些数据我们又做了大量的分析研究工作,取得了重要的研究成果,为下一步中试装置的设计及开发指明了方向。
          主要实验内容及取得的重要成果:
          1、探究了不同催化剂的催化性能,重点实验了小于5微米的纳米型催化剂的催化反应性能,得到了不同催化剂适宜的加入比例,摸索出了加氢及裂化活性组元的关键性能,建立了一套无限微反应器的理论体系。
          2、研究了悬浮床催化剂的吸附焦炭的性能,通过改变催化剂的孔容、比表面积等重要参数,来观察反应转化率、反应釜的结焦情况等一系列的现象,创造了多种能很好避免胶质、沥青质等结焦前躯物缩合团聚的悬浮床催化剂。
          3、研究了不同粒度范围的催化剂所形成的床层,通过测量计算床层的密度、气泡尺寸、气含率、固含率等一系列参数,开发了独具特色的三相均质无床层无限微反应体系,该体系具有无限接近反应动力极限的反应速率,更好的发挥催化剂的反应活性,快速有效的混合速率,高度均匀的分散性能,高效的反应空间利用率等优点
          4、探究了转化率随反应温度的变化规律,找出了不同原料适宜的反应温度430~450℃。通过研究反应器的温升速率,得出了不同原料反应速率的变化规律,找出了影响反应速率的敏感温度区间。
          5、通过实验得到了大量的不同原料在不同反应条件下的物料平衡数据,并对产品性质进行了深入的分析研究,确定了MCT工艺可实现的产品路线。
          6、探究了转化率随反应压力及氢分压的变化规律,得出了适宜重油加工的合适的反应压力范围(18~25MPa)。
          7、通过分析不同条件下的产品收率数据,再结合热裂化和加氢裂化的反应模型,建立了悬浮床加氢工艺的反应模型。
          8、通过对不同原料的结焦物进行分析,得出了不同原料在氢环境下的结焦特性,并形成了一套控制结焦的理论,比如选择合适的催化剂、工艺条件及反应器结构来避免结焦。
          9、通过研究不同的反应时间对转化率的影响,得出了不同原料所需的合适的反应时间。






          返回顶部
          精品国产yw在线观看_好爽…又高潮了十分钟试看_少妇被粗大的猛烈进出图片_国产成人剧情av麻豆映画